
threads
2014-*

Vincent Giles

Introductory Notes
This is a master copy of all existing threads, consolidating earlier works and
acting as an introductory/explanatory note.

Individual pieces will have their own typeset files, but this will act as the
larger ”score” for the collection and grow with the project.

These pieces began in 2014 when they were called Logarithm n, with the
intention of building structured or seeded improvisations using pseudo-code. I
am interested in the idea that algorithmic processes described using pseudo-
code can be interpreted and performed by humans. It is algorithmic music for
humans. In 2020 I was given a residency from Lebowskis Music to further de-
velop these works, but then a global pandemic happened and the performances
were accordingly adjusted. Since 2018 I had been further developing my actual
programming technique in a range of languages, and consequently, the works
rendered in 2020 and onwards lean into a somewhat more ”accurate” program-
ming syntax, whilst retaining the elements of pseudo-code explored in earlier
works. However, things are pretty loose, syntactically. The pieces were renamed
threads in 2020 because ”logarithm” is pretty daft, and ”algorithm” is pretty
obvious.

In 2020 I became increasingly interested in algorithms beyond computers,
largely due to working with the livecoding environment developed by Alex
McLean called TidalCycles. Alex’s research work explores the notion of al-
gorithms throughout human history, looking at patterns, weaving, and other
”crafts” as following algorithmic processes. Indeed, this was something in my
mind in the earlier works but I was unable to articulate that aspect of the
intention until 2020.

This collection is a way of re-consolidating and re-typesetting these works
into a single, growing collection, and to do away with what was a rambling
and fairly incoherent set of instructions for the development of the pseudo-code
syntax. Instead, I would encourage any performers or performances to either
involve me, or, to lean in to the unknown and take what is written as a prompt,
and consider themselves a collaborator in spontaneous, seeded composition.

It is hoped that performers do not feel offput by the use of pseudo-code, but
rather lean into the suggestiveness and view the code as art in its own right.

Vincent Giles, July 15, 2020

1

thread 1
2014

For any number of improvising performers

// This is the original 2014 typesetting

music.function { x = (x-x2)+(y+y3) };
music.function.DoUntil;
music.function { x = x+1 };

// 2020 Re-imagining
// This can act as a guide for other interpretation of other early works.

musicFunction() {
x = (x-x2)+(y+y3);

}
musicFunction().doUntil {

musicFunction() {
x = x+1;

}
}

2

thread 2
2014

For any number of improvising performers

// Begin here
var x = sound;
var y = silence;
{

sound.function(1);
{
sound.function.do(a = a+x-y);
sound.function.doWhile(y/x2+a)=(y3)3;
sound.function.doUntil(y=x2);
}

sound.function(0);
}

3

thread 3b
2016

For (a small quantity (20-30) of) massed instruments

(
// Define variables –zeroed by default

instQuant = 0; // quantity of performers
instFreqn = 0; // frequency
instSim(s) | s = 0 |; // similarity value (a value of 1 means that the

similarity is high bordering on exact)
instAmpn = 0; // amplitude
instRhyn = 0; // rhythm OR gesture
instFXn = 0; // timbral technique

// The algorithm
set instQuant(n.performers);
process = {

process.doLoop {
instQuant(instFreqn, instAmpn, instRhyn, instFXn); // each

performe independently sets their parameters in real time on
each "loop"

process.doLoopWhile(instFreqn(n) != instSim(1));
process.doLoopUntil (instFreqn(n) == instSim(1), then

process.stop); }
}

process.start;
)

4

thread 4
2020

For variable sized ensemble
Developed for Lebowskis DevResIX Residency

// define initial conditions (players, each player's sound types, etc.)

var array.player[0,...,n];
var array.soundType[0,...,4];
var array.duration[];
var perfLen = random;

// each player runs their part
part() {

var player = player[n];
var sound = soundType.choose;
var duration = duration.random;
var play = player.sound.duration;
pause(duration.random);

}

// conditions for piece iteration
var perfDur = n;
while perfDur < perfLen {

part().do;
}

5

thread 5
2020

For variable sized ensemble
Developed for Lebowskis DevResIX Residency

/* This is a piece for multiple, asynchronous improvising players,
either in-person, or in total isolation from each other.

In the case of total isolation, the duet must be imaginary for later
synchronisation and emergence via digital means. */

// Set up initial conditions.

var perfDuration = "Circa 40 minutes";
var duoPartner = ensembleMember.choose;

// Particular player's individual rules
part() {

var duet = thisPlayer + duoPartner.doNotTell;
}

// The main structure
performance() {

while (perfDuration < "40 minutes") {
duet.improvise; // Leave space!
if (duoPartner != currentlyPlaying) {

duoPartner = ensembleMember.choose;
}

}
}

6

thread 6
2020

For any two performers
Developed for Lebowskis DevResIX Residency

/* This piece is for any two performers. */

// Set up initial conditions.

var perfDuration = context.define;
var duoPartner = duoPartner.define;
var thisPlayer = thisPlayer.define;

// The main structure
performance() {

var range;
var dur;
var time;
while (time < perfDuration) {

if (duoPartner.sound == TRUE) {
range = [duoPartner.sound.min, ..., duoPartner.sound.max];
dur = context.define;
thisPlayer.improvise(dur) {

range[].choose;
}

}
else if (duoPartner.sound == FALSE) {

range = [thisPlayer.sound.min, ..., thisPlayer.sound.max];
dur = context.define;
thisPlayer.improvise(dur) {

range[].choose;
}

}
else {

thisPlayer.silence;
}

}
}

7

